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The finite elements method is used as a basis for proposing a numerical algorithm 
for the solution of the problem of the flow of a polymerizing viscoplastic fluid 
with a free surface. The effect of the main parameters of the problem on the . 
character of the hydrodynamic process is explained. 

The theoretical study of the hydrodynamics of flows of polymerizing, anomalously vis- 
cous fluids with a free surface is of practical importance for several areas of chemical 
and power engineering. Such flows are widely encountered in practical applications, such 
as in the formation of products of polymeric materials by injection molding. 

Many investigators have been occupied with various aspects of the numerical study of 
flows of anomalously viscous fluids with a free surface in cylindrical channels. However, 
the results obtained in the well-known studies [I, 2] are applicable mainly to the investi- 
gation of nonreactive media. The authors of [3, 4] undertook a fairly detailed study of 
the flow of anomalously viscous media under nonisotherma! conditions. 

In the present investigation, we will examine the slow flow (Re < i) of a polymerizing, 
nonlinear!y viscoplastic fluid in the region between vertical coaxial cylinders. The theo- 
retical flow region ~t, changing over time, is shown in Fig. la. We will assume that the 
density and thermophysical properties of the liquid are constant. The fluid flows under 
nonisothermal conditions in the presence of heat exchange with the environment through the 
wall of the outer cylinder. Also, heat is released due to dissipation of the energy of mo- 
tion and the occurrence of the polymerization reaction. We will use the law generalized by 
Shul'man [5] for copper to describe the rheological behavior of the fluid: 

�9 ~j = B (V~V~ + ViVa), i = ] = 1; 3. ( 1 ) 
Here 

= - -  ( 2 )  [ Ailm -I- ~/m Am -1 

for a non-Newtonian fluid. 

Given the initial premises, we see that the mathematical formulation of the problem 
will include the following equations: 

the equation of continuity 

V,o i -----0, i = I; 3, ( 3 )  

the equation of motion 

R e [  av~ . J [ at J r  v j  (v I v i) = v i ~  ( v J  -t- v iv  1) - -  r i P  - -  llfi, 

t h e  e n e r g y  e q u a t i o n  

(4) 

Pe - - ~  -6 VJ (vsO) ----- AO -p Br I~A 2 -t- Bw • (1 - -  I$o - -  l~.15) ~, 
, 1 + s O  

Khabarovsk Polytechnic Institute. Translated from Inzhenerno-Eizicheskii Zhurnaf, VoW. 
59, No. 5, pp. 764-771, November, 1990. Original article submitted October 13, 1989. 

0022-0841/90/5905-1395512.50 �9 1991 Plenum Publishing Corporation 1395 



5 

5 

b 

1'4'1)' ~ E 

I 

I 

I 

Z4, -# ~ 

7 

, , , X  7 ~ 

..... i '  

t 
3c1,j) , �9 

Fig. i. Geometry and boundaries of the theoretical region (a) 
and a tetragonal isoperimetric element of second-order accu- 
racy ~a (b); E) mapping of S~ in the local coordinate system 

and the equation describing the macrokinetics of the polymerization reaction 

0--7- + VJ(vi~) --= Ch • (1 - -  ~o--~,~)=-  ( 6 )  
1 + s O  

The  d e p e n d e n c e  o f  t h e  r h e o l o g i c a l  p r o p e r t i e s  o f  t h e  f l u i d  on t e m p e r a t u r e  and t h e  d e g r e e  
o f  p o l y m e r i z a t i o n  w i l l  be  c o n s i d e r e d  by  means  o f  t h e  f o l l o w i n g  r e l a t i o n s :  

~ = ~ (O0, ~o) exp [Pni ~ - -  Pn~ O], ( 7 )  

~1 = ~p, ~2 = ~0, n = const, m ---- const. 

We will use the following as the boundary conditions of problem (3-7): 

a) at the inlet F l of the flow region ~t (Fig. la), we assign the velocity profile of 
the steady-state flow with theology (i); for the temperature and degree of polymerization, 
we adopt the initial conditions 

e (x)l~r, = e0, ~ (x)lx~F, = ~0; ( s )  

b)  on t h e  s o l i d  w a l l s  F2 and  Fa o f  t h e  t h e o r e t i c a l  r e g i o n  ~ t  we h a v e  

Vlxer,,r ' --= Vo, 

a e  / -- o, 
On [xeF2 (9) 

O@ [ = Bi (O.  - - e ) .  
an ker, 

The last condition in ( 9 )  is adopted on the basis of the proposition hxz/L << 1 at ~wa = ~q" 

On the free surface, we require satisfaction of the kinematic and dynamic conditions: 

a~l ._}_V.v~ I = O, ( 1 0 )  
at 

{ - -  PSij + ~(V,V ] + V]Vi)} njlr, = ~, (11) 

{1----0, t3 = - - P 0 ,  i, i = 1; 3. 

Yor e n e r g y  e q u a t i o n  ( 5 )  we f o r m u l a t e  t h e  a d i a b a t i c  c o n d i t i o n  

a@ (12) 
On r ,  = 0 "  
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Thus, the problem of the flow of a polymerizing viscoplastic fluid with a free surface 
filling a prescribed region ~ amounts to the determination of S t over time and the compon- 
ents of the velocity vector, pressure, temperature, and non-Newtonian viscosity that satisfy 

Eqs. (3-12). 

When system (3-12) is solved, the continuity equation is customarily replaced by the 
Poisson equation for pressure [2]. This equation has a complicated form and is character- 
ized by weak convergence during numerical solution. 

Here, we will make use of an algorithm that was proposed in [6]. He will represent the 
sought velocity and pressure fields in the form of sums of the approximate values (v, P) and 
corrections (v', P') 

= + 

To determine v' and P' 
Here, 

P = P - t - P ' ,  i =  1; 3. 

, we will use the Prakht velocity-correction potential �9 [6, 14]. 

(13)  

, d g  p, 2P ~.  (14)  
dxi At 

The distribution of the potential �9 in the flow region S t will be found from the Poisson 
equation 

AW = - -  div V ( 15 ) 

w i t h  homogeneous Neumann boundary  c o n d i t i o n s  

O~,[;.i ~ = 0 '  ~ , ~ I ,  4. (16)  
Ona 

The numerical solution of the problem is based on the finite-element method with the 
use of Galerkin's weighted errors [7]. The flow region S t is subdivided into eight-node 
isoperimetric finite elements S~ (Fig. Ib) in such a way that ~t = ~S~. We construct the 

finite-element grid automatically in accordance with an algorithm [8] adapted to the solu- 
tion of the problem. We approximate the main variables vi, @, ~ and ~ in the element ~ 
with the use of quadratic basis functions, while we approximate pressure by means of linear 
basis functions [9]: 

8 8 8 

==l ~=1 ==1 (17)  
8 4 

~ 1  ~ I  

A f t e r  we i n s e r t  Eqs.  (17)  i n t o  Eqs.  ( 4 - 6 ) ,  ( 1 3 ) ,  and ( 1 5 ) ,  i n t e g r a t e ,  and r e d u c e  t h e  r e s u l t s  
t o  g l o b a l  form,  we can r e p r e s e n t  them in  t h e  form o f  t h e  f o l l o w i n g  s y s t e m  o f  m a t r i x  equa-  
t i o n s :  

[Ml{v~} + [Ol{v ~} = {F~}, (18)  

{Fd, (19) 
" [Ml{v~} = [M]{}~} q-- [H~]{~}; (20)  

[el{@,} q- [T]{@} = {Fa}, (21)  

[B]{~,}-:t7 [Kl{ff} = {F~}, : .,. (22)  

We solve system of nonlinear equations (18) iteratively with the use of the adaptive proce- 
dure of the SOR method [i0]. Integration of Eqs. (21-22) over time is done in accordance 
with the Crank-Nicolson scheme. The equations are then solved by the frontal method [i0]. 

Second- and third-order boundary conditions are accounted for automatically in projec- 
tion-grid equations (18-22). The first-order boundary conditions are numerically realized 
in accordance with the Payne-Aarons algorithm [12]. As the initial conditions of the prob- 
lem, we will use the fields of velocity, pressure, temperature, degree of polymerization, 
and effective viscosity obtained when the problem is solved with a plane free surface. 
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The algorithm used to solve the problem is conveniently broken down into two cycles: 
isothermal and nonisothermal. With allowance for this, we can represent the algorithm in 
the form of the following successive computing operations: a) in the first cycle, we use 
the projection-grid equations (18) to determine the approximate velocity field v i for the 
(n + l)-th iteration, with the value of non-Newtonian viscosity (~) being taken from the 
n-th iteration; we use the resulting velocity field and (19) to determine the potential 
distribution and, thus, the corrections to velocity and pressure; we use (13) to find the 
corrected velocity and pressure fields; we continue the iteration until satisfaction of 
the convergence conditions 

max [1~ +1 - -  (I)~ ]1 < max ]~f]  ei; 
i i 

b) in  t h e  n o n i s o t h e r m a l  c y c l e ,  we u s e  Eqs .  (21)  and (22)  t o  f i n d  t h e  f i e l d s  o f  t e m p e r a t u r e  
and degree of polymerization; we use Eqs. (7) to correct the rheological parameters of the 
fluid as a function of temperature and degree of polymerization and, thus, the field of non- 
Newtonian viscosity D; the isothermal cycle is then repeated. After convergence of the 
iterative process, we make a time step and we use kinematic condition (i0) to determine the 
new position of the free surface. Its form is approximated by splines. We complete the 
finite-element grid in the resulting region ~t+At and again solve Eqs. (18-22). Thus, an 
acceptable solution to the problem will be satisfaction of the condition P = 0 for all nodes 
of the grid, since in this case the values of v i and P in (13) will be exact values of the 
components of the velocity vector and pressure, respectively. Proceeding on the basis of 
these considerations, the equation for �9 (15) can be regarded as an intermediate algorithm 
which allows us to determine the exact fields of velocity and pressure without directly af- 
fecting the final solution of the problem. It should be noted that the above-examined 
iterative algorithm does not converge if lower relaxation is not used in the solution of 
Eqs. (18-19). This is evidently the result of the strong nonlinearity of the problem and 
the incompatibility of the gradient �9 at the boundaries of the region ~t with the source 
term in the Poisson equation (15). Here, 

In the present study, we took ~v = ~ = 0.i for the initial relaxation factors. Using 
the adaptive procedure in [i0], these factors were subsequently reduced to the values ~v = 
0.5, ~ = 0.75. 

Another important feature of the numerical solution of the problem is manifest in stud- 
ies of flows with a large Peclet number (Ph > 2). In this case, convective terms will play 
the deciding role in the energy equation. Thus, the diagonal elements of the thermal con- 
ductivity matrix will be unimportant and, given the boundary conditions we have assigned 
for the problem, its solution will be of an oscillating character. To avoid undesirable 
oscillations, we can use a finer grid [3] and satisfy the condition Ph < 2. However, this 
leads to a substantial increase in computing time. To eliminate the numerical instability 
in our problem, we approximated the energy equation by introducing asymmetric weight func- 
tions [13]. Such functions are the analog of differences against the flow in the finite- 
difference method. 

The results of the calculation are conveniently analyzed with the use of dimensionless 
N 

complexes: W, Gri, Lw i, Gri, St. In this case, withaprescribed flow-region geometry and pre- 
scribed values for the coefficients n, m, and ~, these complexes fully characterize the hy- 
drodynamic process. The effect of the parameters W, Gr i, St, n, m on the character of the 
hydrodynamic process was studied in [3, 4, 6]. 

In the~present investigation, we will restrict ourselves to study of the effect of the 
parameters Gr i and Lw i when the values of the constants n = i.i, m = 1.3, ~ = i. Figure 2 
shows the evolution of the maximum deflection of the front of the free surface over time. 
Analysis of the results of the calculation shows that, for the isothermal case, the free 
surface is established beginning from a certain moment of time t m L/UH. This is also evi- 
dence of the establishment of the front of the free surface, which subsequently moves in 
the direction of the Ox3 axis at a constant rate equal to the flow-rate-mean velocity of 
the flow at the inlet F I. One characteristic hydrodynamic feature of the nonisothermal 
flow of a viscoplastic fluid which undergoes structuring over time is that the evolution of 
the surface does not occur at an established position. An increase in the parameters Lw i 
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Fig. 2. Evolution of the maximum deflection of the front of 
the free surface: 1--isothermal case W=53; 2 - - W = 5 3 ;  Qr~=3,6-10 -2, 
Gr2=2,9:10-% Grl==t,4-10 -s, ~r2=1,7.10 -3, LWI~4.10 -2, Lw2--7,1-10 -2, St=0,81; 3 - -  
Lwt--9,4.10-2, Lw~=0,1ll; 4 - -  Gq=l ,4 .10  -2,Gr2=1,7.10-2; 5 - -  Gq--/-4,8.10 -2, Gr2 
=6,1- 1'0 -2 �9 

Fig. 3. Profile of radial (1-5) and axial (i', 3') compon- 
ents of the velocity vector on the free surface of the liquid 
at the moment of time t = 6 L/U at the parameter values shown 
in Fig. 2. 

leads to an increase in the maximum convexity of the free surface and, thus, to a reduction 
in the intensity of the strain rates on it (Fig. 3). 

The situation is different in regard to the study of flows in which the Griffith parame- 
ters have the determining effect, in this case, an increase in the parameters Gr i leads to 
a decrease in the maximum deflection of the front over time. This reduction can be attrib- 
uted directly to a decrease in effective viscosity in the region of the free surface and, 
thus, a reduction in strain-rate intensity on it. As a result, an increase in the parame- 
ters Lw i leads to an increase in the adaptive properties of the fluid over time, while an 
increase in Gr i leads to an increase in its pseudoplastic properties~ It must also be noted 
that an increase in the parameters Lw i leads to a substantial increase over time in the di- 
mensions of the zone of intensive radial flow (D R ) in the vicinity of the free surface. 
Thus, examination of two variants for filling out the region ~ with the parameter values 
Lw i = 0 and Lw i = 0.43 led to doubling of the dimensions D R at the moment of time t = 4. 
However, a change in the Griffith parameters within the range 1"10 -4 ! Gr i ! 1"10 -2 produced 
almost no change in the dimensions D R . 

It is interesting to consider the effect of the parameters Lw i and Gr i on the character 
of fluid distribution in the case of batch filling of the region s We will introduce 
marker particles to visualize the flow pattern in the theoretical region gt- Their position 
over time is determined from the kinematic condition 

x~ +' = x7 + ~m.  

We find the components of the velocity vector of the markers (vi) in finite element ~ from 
interpolation formulas (17). Figure 4 shows the effect of the parameters Gr i and Lw i on 
the character of the mass distribution of i0 batches of fluid. The batches fed into the 
region at time intervals At = 0.3 with values of the parameters W = 8.1, Gr I = 3.6"10 -5 , 
Gr2 = 4.1"10 -5 , Grl = 1.7-10 -3, Gr2 = 6.4"10 -3, Lwl = 0.i, Lw 2 = 0.25, St = 4-10 -3 , n = 0.8, 
m = 1.6, ~ = 2. For comparison, we simultaneously calculated the pattern of mass distribu- 
tion under isothermal conditions for a nonreactive fluid. It follows from the results that 
allowing for changes in the structural properties of the fluid under nonisothermal condi- 
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Fig. 4. Pattern of mass distribution of i0 batches of fluid: 
a) isothermal case with Lw i = 0; b) with allowance for the 
change in the structural properties of the batches. 

tions can have a significant effect on the character of the mass distribution. The effect 
of the above parameters on the mass distribution will be determined by the quantity 6 i = 
Gri/Lw i, so that at 6 i << 1 the determining effect will be exerted by structural changes in 
the fluid resulting from the polymerization reaction. At ~i >> i, the nonisothermal nature 
of the process will be decisive. The numerical calculations showed that, other conditions 
being equal, an increase in the parameters Lw 2 and Gr2, such that Lw 2 > 0.i, Gr 2 > 0.i and 
62 >> i or 62 << i, will produce the largest changes in mass distribution over time. 

NOTATION 

v I, v 3, radial and axial components of velocity; A = J2ei~e~i , intensity of the strain 
rates; e..13 = 0.5(VivJ + V'vi),3 strain-rate tensor; ~.x]., deviat~176 the stress tensor:�9 ~.~�9 
flow stress; ~p, plastic viscosity; n, m, coefflcients" of the nonlinear rheological, r~i/nm~ 
P, pressure: u = B/~, dimensionless coefficient of non-Newtonian viscoslty; De = [~0 - 
(~pAav) I/m]n/Aav , effective viscosity; Aav = U/L; U, flow-rate-mean velocity; L = R 2 - R I; 
RI, R2, radii of the internal and external tubes; 0 = (T- To)/T,, dimensionless temperature; 
T, To, running and initial Value of temperature; T, = (~, Aav + Q~,)/pc, characteristic 
temperature gradient; Q, amount of heat released during the polymerization reaction; fi, de- 
gree of polymerization; ~,, characteristic change in the degree of polymerization during 
the filling of the region; < = E/RTo; E, activation energy of the reaction; s = T,/To; ~, 
order of the reaction; Re = pUL/~e, Reynolds number; W 3 = Re/Fr; Fr = U2/Lg, Froude number; 
W I = 0; Pe = pCUL/X, Peclet number; Br = ~eU2/XT,, Brinkman number; Bw = QKoLE/(T,% exp(K)); 
Ch = KoL(~,U exp(K))-1; Bi = hL/l, Biot number; h, heat-transfer coefficient; Fe, Ne, linear 
and quadratic basis functions; [M], "mass" matrix; [G], "stiffness." matrix; [C], "heat 
capacity" matrix; [K], "thermal conductivity" matrix; [B], "polymerization" matrix; [K], 
"convection" matrix; IS], "potential" matrix; {vi}, {FI}, vectors of the unknowns and the 
"loads"; Ph = pUAxC/X, grid Peclet number; Ax, maximum step of finite-element grid; Gr I = 
Br Sn Pnl; Gr 2 = Br Se Pn2; Grl = Bw Se Pn I, Gr2 = Bw Sn Pn2, Griffith numbers; Pni= ai$*, 
Pni= biT,, Pearson numbers; ai, bi, constants of the medium; Sn = ~/De, Se = ~o/~eAav; 
Lw I Ch Sn Pnl; Lw2 = Ch Se Pn2; St = Bi/Pe, Stanton number; N(xl, t), equation of the free 
surface; ~, thermal conductivity of the fluid; p, density; C, heat capacity; A, Laplace 
operator; Ko, rate constant of reaction; g, acceleration due to gravity. 
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EXPERIMENTAL STUDY OF HEAT TRANSFER IN LIQUID- 

NITROGEN COOLING OF THE SURFACE OF SUPERCONDUCTING 

YBa2Cu307 CERAMIC. 2. BURNOUT IN NUCLEATE 

BOILING 

V. V. Baranets, Yu. A. Kirichenko, 
S. M. Kozlov, S. V. Nozdrin, 
K. V. Rusanov, and E. G. Tyurina 

UDC 536.248.2.001.5 

Burnout in the nucleate boiling of nitrogen on flat horizontal metal-oxide 
ceramic heaters is investigated in the pressure range from 1.3"i04 Pa to 4.5 ~ 
l0 s Pa. 

We have previously [i] investigated the characteristics of heat transfer in the nucle- 
ate boiling of nitrogen on ceramic samples at low to moderate heat flux densities q. Here 
we give the results of a study of heat transfer at heat inputs approaching burnout, along 
with the characteristics of nucleate boiling burnout. The first critical (first-stage burn- 
out) heat flux density qcrz and the corresponding differential temperature ATcr I are import- 
ant parameters in calculating the stabilization conditions for current-carrying superconduc- 
tors cooled by a boiling cryogen [2]. The literature to date does not contain any data on 
qcrl and ATcr z for the boiling of nitrogen on high-temperature superconducting (HTSC) ma- 
terials. Because of the porous structure and low thermal conductivity I N of ceramics [3], 
these two critical quantities can be assumed to differ from the typical values for boiling 
on metal surfaces. 

The experiments were carried out in a metal cryostat on samples of the superconducting 
yttrium ceramic YBa2Cu307 with thicknesses of 3.1 mm and 2.0 mm (samples No. 2 and No. 4 in 
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